0

آموزش مقدماتی یادگیری ماشین در پروداکشن

آموزش مقدماتی یادگیری ماشین در پروداکشن

درباره این دوره
درباره دوره: در دوره آموزش مقدماتی یادگیری ماشین در پروداکشن با زیرنویس اختصاصی از مکتب‌خونه، شما اجزای مختلف را شناسایی کرده و یک سیستم تولید ML را به صورت سرتاسر طراحی می‌کنید: محدوده پروژه، نیازهای داده، استراتژی‌های مدل‌سازی و محدودیت‌ها و الزامات استقرار. همچنین یاد خواهید گرفت که چگونه یک خط پایه مدل ایجاد کنید، گذار مفهوم و فرآیند توسعه، استقرار و بهبود مستمر یک برنامه کاربردی ML تولیدی را نمونه‌سازی کنید. درک مفاهیم یادگیری ماشین و یادگیری عمیق ضروری است، اما اگر به دنبال یک شغل موثر در حوزه هوش مصنوعی هستید، به مهارت مهندسی تولید نیز نیاز دارید. مهندسی یادگیری ماشین برای تولید، مفاهیم اساسی یادگیری ماشین را با تخصص عملکردی توسعه نرم‌افزار مدرن و نقش‌های مهندسی ترکیب می‌کند تا به شما در توسعه مهارت‌های Production-Ready کمک کند. برای شروع یک دوره آموزش مقدماتی یادگیری ماشین در پروداکشن، مهم است که ابتدا با مفاهیم اصلی و پایه‌ای یادگیری ماشین آشنا شوید. در این دوره، شما با الگوریتم‌های یادگیری ماشین، از جمله نظارتی و بدون نظارت آشنا خواهید شد و یاد می‌گیرید چگونه داده‌ها را برای آموزش مدل‌ها پیش‌پردازش کنید. یادگیری ماشین چیست؟ استفاده از یادگیری ماشین در پروداکشن می‌تواند مزایای قابل‌توجهی داشته باشد. نخست، افزایش بهره‌وری و کارایی است؛ مدل‌های یادگیری ماشین می‌توانند داده‌های بزرگ را تجزیه‌وتحلیل کنند و به‌سرعت تصمیم‌گیری‌های دقیق ارائه دهند. دوم، اتوماسیون فرایندها؛ این مدل‌ها قادرند فرایندهای تکراری را اتوماتیک کرده و از نیروی انسانی برای وظایف پیچیده‌تر و خلاقانه‌تر استفاده کنند. سوم، بهبود تجربه مشتری؛ یادگیری ماشین می‌تواند به شناسایی الگوها و نیازهای مشتریان کمک کرده و خدمات شخصی‌سازی شده ارائه دهد که این امر منجر به افزایش رضایت مشتری می‌شود. در نهایت، نوآوری و توسعه محصول؛ داده‌های به‌دست‌آمده از یادگیری ماشین می‌توانند درک بهتری از بازار فراهم آورده و به توسعه محصولات و خدمات جدید کمک کنند. این مزایا نشان می‌دهند که چرا یادگیری ماشین در پروداکشن به یک ابزار کلیدی در دنیای تکنولوژی و کسب‌وکار تبدیل شده است. دوره ماشین لرنینگ، راهنمای اساسی شما برای ورود به این فضاست. ضمن آن آموزش رایگان یادگیری ماشین با پایتون، یکی از اصلی‌ترین و پر جستجو ترین مباحث در این زمینه است. پس از آن، تمرکز دوره بر روی استقرار مدل‌ها در محیط‌های تولید است که شامل معماری سیستم‌های یادگیری ماشین، انتخاب پلتفرم‌ها و ابزارهای مناسب برای استقرار، و نحوه مدیریت وابستگی‌ها و مشکلات مقیاس‌پذیری است. علاوه بر این، شما با مفاهیم اصلی نظارت بر عملکرد مدل در محیط‌های واقعی و روش‌های بهبود مداوم مدل‌ها پس از استقرار آنها آشنا خواهید شد. همچنین، مباحثی درباره تقسیم داده‌ها به داده‌های آموزش، آزمایش و اعتبارسنجی پوشش داده می‌شود. یادگیری ماشین در پروداکشن به معنای استفاده از الگوریتم‌ها و مدل‌های یادگیری ماشینی در محیط‌های عملیاتی و تولیدی است. این فرایند، از جمع‌آوری داده‌ها و آموزش مدل‌ها تا استفاده از آن‌ها برای انجام وظایف و پردازش‌های مختلف در محیط‌های واقعی، از جمله سرویس‌های آنلاین، دستگاه‌های هوشمند، یا سیستم‌های تولیدی، را شامل می‌شود. در این روند Machine learning، داده‌ها به طور مداوم جمع‌آوری می‌شوند و مدل‌ها به‌روزرسانی می‌شوند تا با تغییرات محیط و نیازهای کاربران همگام شوند. این روند نه‌تنها نیازمند داشتن مدل‌های دقیق و کارآمد است، بلکه به مدیریت داده‌ها، نگهداری مدل‌ها، و ارتباط مستمر با تیم‌های مهندسی و توسعه نیز نیاز دارد. در آموزش مقدماتی یادگیری ماشین برای استفاده در محیط‌های تولید (پروداکشن)، مباحث مختلفی مورد بررسی قرار می‌گیرند. این مباحث در آموزش یادگیری ماشین با پایتون به‌طورکلی به دودسته تقسیم می‌شوند: فنی و مدیریتی. مدل‌سازی و ارزیابی: 1.     آموزش داده‌ها: انتخاب و پیش‌پردازش داده‌ها برای آموزش مدل. 2.     ساخت مدل‌های یادگیری ماشین: انتخاب الگوریتم‌های مناسب برای مسئله موردنظر. 3.     ارزیابی مدل: استفاده از معیارهای عملکردی برای سنجش کیفیت مدل‌ها. مدیریت داده‌ها: 1.     برخورد با داده‌های بزرگ: مدیریت حجم زیاد داده‌ها و استفاده از ابزارهای مناسب مانند Hadoop یا Spark. 2.     تمیزکاری داده: اطمینان از دقت و کیفیت داده‌ها قبل از آموزش مدل. بهینه‌سازی مدل: 1.     تنظیم پارامترها: بهینه‌سازی تنظیمات مدل برای بهبود عملکرد. 2.     انتخاب ویژگی‌ها: انتخاب داده‌ها و ویژگی‌هایی که بیشترین تأثیر را بر پیش‌بینی دارند. عملیاتی‌سازی مدل (MLOps): 1.     دیپلوی مدل‌ها: استراتژی‌های برای به‌کارگیری مدل‌ها در محیط‌های تولید. 2.     نظارت و مانیتورینگ: رصد عملکرد مدل در زمان واقعی و اطمینان از پایداری و کارایی مدل. 3.     به‌روزرسانی مدل‌ها: ارزیابی مدل‌ها و اعمال تغییرات لازم بر اساس داده‌های جدید. امنیت و حریم خصوصی: 1.     حفاظت از داده‌ها: اطمینان از امنیت داده‌ها و رعایت قوانین حفاظت از داده‌ها مانند GDPR. 2.     اخلاق در یادگیری ماشین: توجه به مسائل اخلاقی در استفاده از مدل‌های یادگیری ماشین. افرادی که به دوره آموزش مقدماتی یادگیری ماشین در پروداکشن نیاز دارند عمدتاً شامل چندین گروه مختلف هستند: 1. توسعه‌دهندگان نرم‌افزار: توسعه‌دهندگانی که قصد دارند مهارت‌های خود را در زمینه یادگیری ماشین توسعه دهند و بتوانند مدل‌های یادگیری ماشین را در محصولات نرم‌افزاری خود ادغام کنند. 2. تحلیلگران داده و دانشمندان داده: این افراد که قبلاً با تحلیل داده‌ها آشنایی دارند، می‌توانند از یادگیری ماشین برای بهبود تحلیل‌های خود و ایجاد مدل‌های پیش‌بینی دقیق‌تر استفاده کنند. 3. مهندسین یادگیری ماشین: مهندسینی که به تازگی وارد این حوزه شده‌اند یا آن‌هایی که می‌خواهند دانش فنی خود را در زمینه به‌کارگیری مدل‌های یادگیری ماشین در محیط‌های واقعی و پروداکشن افزایش دهند. 4. مدیران پروژه و مدیران محصول: این افراد باید درک کافی از فناوری‌های یادگیری ماشین داشته باشند تا بتوانند تصمیمات آگاهانه‌ای در مورد ادغام این تکنولوژی‌ها در محصولات و خدمات شرکت خود بگیرند. 5. استارتاپ‌ها و کارآفرینان: کسانی که در حال راه‌اندازی یک کسب‌وکار جدید هستند و می‌خواهند از قدرت یادگیری ماشین برای ایجاد مزیت رقابتی استفاده کنند. دوره‌های مقدماتی به این افراد کمک می‌کنند تا با مفاهیم اصلی یادگیری ماشین و نحوه پیاده‌سازی آن‌ها در محیط‌های واقعی آشنا شوند. این آموزش‌ها معمولاً شامل مواردی مانند پردازش داده‌ها، ساخت مدل‌ها، آزمایش و توسعه مدل‌ها در محیط پروداکشن می‌شود. آموزش مقدماتی ماشین لرنینگ در محیط‌های تولیدی و پروداکشن کاربردهای گسترده‌ای دارد که می‌توانند به بهبود کارایی، کاهش هزینه‌ها و افزایش کیفیت محصولات کمک کنند. این کاربردها نمونه‌هایی از چگونگی استفاده از یادگیری ماشین در پروداکشن هستند که می‌توانند به شرکت‌ها کمک کنند تا کارایی خود را افزایش دهند و درعین‌حال هزینه‌ها را کاهش دهند. مدل‌های یادگیری ماشین می‌توانند با تجزیه‌وتحلیل داده‌های تاریخی فروش، ترندهای مصرفی و داده‌های بازار، به پیش‌بینی تقاضای آینده برای محصولات کمک کنند. این اطلاعات به شرکت‌ها امکان می‌دهد تا موجودی خود را بهتر مدیریت کنند و برنامه‌ریزی تولید خود را بهینه‌سازی نمایند. با استفاده از کتاب یادگیری می‌توان تجهیزات و محصولات را به‌صورت مداوم نظارت کرد و کیفیت تولید را در زمان واقعی ارزیابی نمود. این فناوری می‌تواند عیوب را به‌سرعت شناسایی کند و به کاهش هزینه‌های مرتبط با مرجوعی‌ها و تعمیرات کمک کند. مدل‌های یادگیری ماشین می‌توانند در شناسایی الگوهای پنهان در داده‌های تولیدی و پیشنهاد راه‌حل‌هایی برای بهبود فرآیندها کمک کنند. این بهینه‌سازی می‌تواند شامل کاهش زمان توقف ماشین‌آلات، افزایش بهره‌وری و کاهش مصرف انرژی باشد. با تجزیه‌وتحلیل داده‌های سنسورهای تجهیزات، مدل‌های یادگیری ماشین می‌توانند زمان‌های بالقوه خرابی را پیش‌بینی کنند و به شرکت‌ها امکان می‌دهند تعمیرات را قبل از وقوع خرابی انجام دهند. این کار به کاهش زمان تعطیلی و افزایش عمر مفید تجهیزات کمک می‌کند. در خطوط تولید، روبات‌ها و سیستم‌های خودکار می‌توانند با استفاده از الگوریتم‌های یادگیری ماشین برای انجام دقیق‌تر و سریع‌تر فعالیت‌ها به کار روند. این فناوری‌ها می‌توانند به افزایش سرعت تولید و کاهش خطاهای انسانی کمک کنند. آموزش یادگیری ماشین در محیط پروداکشن در دنیای مکتب خونه، یک فرآیند چالش‌برانگیز و حیاتی است که نیازمند توجه دقیق به جزئیات و اجرای موثر است. در این فرآیند، مدل‌های یادگیری ماشین که پیش‌تر در محیط آزمایشی آموزش داده شده‌اند، باید به طور صحیح و با کیفیت به محیط پروداکشن منتقل شوند. ابتدا، لازم است که داده‌های ورودی مدل در محیط پروداکشن بررسی شوند تا اطمینان حاصل شود که دقیق و کامل هستند. سپس، معماری مدل و پارامترهای آن باید با دقت مورد بررسی قرار گیرند تا اطمینان حاصل شود که مدل به‌درستی عمل می‌کند و بهینه‌سازی‌های لازم انجام شده‌اند. ضمن آن، لازم است که روند نگهداری و به‌روزرسانی مدل‌ها در محیط پروداکشن مشخص شود تا همیشه از بهترین عملکرد ممکن برخوردار باشیم. این شامل نظارت مداوم بر عملکرد مدل، اعمال به‌روزرسانی‌های لازم به مدل بر اساس داده‌های جدید، و ارزیابی دقیق نتایج و خطاها است. در نهایت، برای اطمینان از پایداری و عملکرد مدل‌ها در محیط پروداکشن، استفاده از تکنولوژی‌های مانیتورینگ و لاگ‌گیری لازم است تا هرگونه مشکلات و نقاط ضعف به‌سرعت شناسایی و رفع شوند. ·        بهبود دقت در پیش‌بینی تقاضا ·        افزایش کیفیت محصول ·        کاهش هزینه‌های تولید ·        بهینه‌سازی فرآیندهای تولید ·        کاهش زمان توقف تجهیزات ·        پیشگیری از خرابی‌ها و تعمیرات گران‌قیمت ·        افزایش بهره‌وری کارکنان ·        خودکارسازی و بهبود عملکرد روباتیک ·        کاهش خطاهای انسانی ·        افزایش سرعت تولید از مزایای فراگیری این دوره در سری آموزش‌های زبان ماشین و ماشین لرنینگ مکتب خونه است! بسته به این که آموزش مقدماتی یادگیری ماشین را در چه پلتفرمی می‌گذرانید، ممکن است با سرفصل‌های مختلفی مواجه شوید. اما هوش مصنوعی دنیای گسترده‌ای دارد و در مکتب خونه، دوره‌ای که ارائه می‌گردد دارای تمامی زیر و بوم‌های سطح مقدماتی آن برای کسانی است که قصد ورود به این فضا را دارند: 1.     تعریف مسئله و تجمیع داده‌ها: 2.     پیش‌پردازش داده‌ها: 3.     انتخاب مدل: 4.     آموزش مدل: 5.     ارزیابی مدل: 6.     بهینه‌سازی مدل: 7.     استقرار مدل: 8.     پایش و نگهداری: این دوره به فراگیران کمک می‌کند تا با اطمینان بیشتری به توسعه و پیاده‌سازی راهکارهای پیشرفته یادگیری ماشین در محیط‌های پروداکشن بپردازند، ضمن اینکه درکی جامع از چالش‌ها و موانع را به دست می‌آورند که این امر در نهایت به بهبود و افزایش کارایی و اثربخشی تجاری منجر می‌شود. مخاطبین دوره یادگیری ماشین در محیط پروداکشن (Production) معمولاً شامل طیف وسیعی از علاقه‌مندان به حوزه‌های کامپیوتر و یادگیری زبان ماشین خواهد شد. آن‌ها را می‌توان در این گروه‌ها دسته‌بندی کرد: 1. توسعه‌دهندگان نرم‌افزار: این افراد به دنبال دانش و مهارت‌هایی هستند که لازم است تا مدل‌های یادگیری ماشین را در برنامه‌ها و سیستم‌های نرم‌افزاری ادغام کنند. 2. مهندسین داده: این گروه بر روی زیرساخت‌های مدیریت داده‌ها، پیکربندی و بهینه‌سازی پایگاه‌های داده برای عملیات یادگیری ماشین تمرکز دارند. 3. متخصصان یادگیری ماشین: این افراد که دارای دانش پیشرفته در مدل‌های یادگیری ماشین هستند، به دنبال بهبود و بهینه‌سازی مدل‌ها برای کاربردهای واقعی هستند. 4. مدیران پروژه و محصول: آن‌ها مسئولیت نظارت بر توسعه و پیاده‌سازی پروژه‌های یادگیری ماشین را دارند و به دنبال فهم بهتری از چگونگی ادغام فناوری‌های یادگیری ماشین در محصولات و خدمات هستند. 5. تحلیلگران کسب‌وکار: این گروه از متخصصان که به دنبال درک تأثیرات یادگیری ماشین بر روی تجارت و تصمیم‌گیری‌های استراتژیک هستند. 6. متخصصان امنیت سایبری: این افراد به کاربرد یادگیری ماشین در تشخیص و مقابله با تهدیدات سایبری علاقه‌مند هستند. دوره آموزش مقدماتی یادگیری ماشین به این افراد کمک می‌کنند تا درک بهتری از پیاده‌سازی، نگهداری و بهینه‌سازی مدل‌های یادگیری ماشین در محیط‌های پروداکشن به دست آورند و بتوانند با چالش‌های واقعی که در این محیط‌ها وجود دارد بهتر مقابله کنند. در دنیای امروز که تکنولوژی به‌سرعت در حال تغییر و پیشرفت است، داشتن دانش عمیق و کاربردی از یادگیری ماشین در محیط‌های واقعی و تولیدی می‌تواند تفاوت قابل‌توجهی در موفقیت پروژه‌ها و نوآوری‌ها ایجاد کند. این دوره‌ها معمولاً مهارت‌هایی مانند ادغام مدل‌ها با زیرساخت‌های موجود، مدیریت داده‌ها، نظارت و بهینه‌سازی عملکرد مدل‌ها در زمان واقعی را آموزش می‌دهند. طی‌کردن کامل‌ترین دوره یادگیری ماشین در محیط پروداکشن برای هر کسی که در این حوزه فعال است از اهمیت بالایی برخوردار است. همچنین، فراگیری نحوه مدیریت و حل مسائل مرتبط با امنیت، حریم خصوصی داده‌ها و مقیاس‌پذیری از جنبه‌های دیگری است که در چنین دوره‌ای پوشش داده می‌شود. اگر به دنبال کامل‌ترین و دقیق‌ترین آموزش مقدماتی یادگیری ماشین در پروداکشن هستید، لازم است که تمامی سرفصل‌های یک دوره را بررسی کنید. در مکتب خونه، این دوره با تمامی جزئیات و اطلاعات فنی، در دسترس شماست. همچنین در مکتب خونه انواع دوره آموزش برنامه نویسی، آموزش پایتون، آموزش هوش مصنوعی و آموزش ماشین لرنینگ به عنوان مکمل و پیش نیاز این دوره موجود است. مروری بر چرخه حیات و استقرار ML: 1 – خوش‌آمدگویی 2 – مراحل یک پروژه ML 3 – مطالعه موردی: تشخیص گفتار 4 – طرح کلی دوره 5 – چالش‌های اصلی 6 – الگوهای استقرار 7 – نظارت 8 – نظارت بر pipeline انتخاب و آموزش یک مدل: 1 – نمای کلی مدلسازی 2 – چالش‌های اصلی 3 – چرا میانگین خطای پایین به اندازه کافی خوب نیست؟ 4 – ایجاد یک خط پایه 5 – نکاتی برای شروع 6 – مثال تجزیه و تحلیل خطا 7 – اولویت‌بندی 8 – مجموعه داده‌های منحرف 9 – حسابرسی عملکرد 10 – توسعه هوش مصنوعی داده محور 11 – تصویر مفیدی از افزایش داده‌ها 12 – افزایش داده‌ها 13 – آیا افزودن داده‌ها می‌تواند ضرر داشته باشد؟ 14 – افزودن امکانات 15 – ردیابی آزمایشی 16 – از داده‌های بزرگ تا داده‌های خوب تعریف داده و خط مبنا: 1 – چرا تعریف داده سخت است؟ 2 – نمونه‌های بیشتر ابهام لیبل 3 – انواع عمده مشکلات داده 4 – داده‌های کوچک و سازگاری لیبل 5 – بهبود ثبات لیبل 6 – عملکرد سطح انسانی (HLP) 7 – افزایش HLP 8 – به دست آوردن داده‌ها 9 – سلسله داده 10 – متا داده، منشأ داده و اصل و نسب 11 – تقسیم‌های متوازن آموزش/dev/تست 12 – محدوده‌بندی چیست؟ 13 – فرآیند محدوده 14 – دقت در امکان‌سنجی و ارزش 15 – اهتمام به سنجش 16 – نقاط عطف و منابع
سرفصل‌های دوره
مروری بر چرخه حیات و استقرار ML: 1 – خوش‌آمدگویی 2 – مراحل یک پروژه ML 3 – مطالعه موردی: تشخیص گفتار 4 – طرح کلی دوره 5 – چالش‌های اصلی 6 – الگوهای استقرار 7 – نظارت 8 – نظارت بر pipeline انتخاب و آموزش یک مدل: 1 – نمای کلی مدلسازی 2 – چالش‌های اصلی 3 – چرا میانگین خطای پایین به اندازه کافی خوب نیست؟ 4 – ایجاد یک خط پایه 5 – نکاتی برای شروع 6 – مثال تجزیه و تحلیل خطا 7 – اولویت‌بندی 8 – مجموعه داده‌های منحرف 9 – حسابرسی عملکرد 10 – توسعه هوش مصنوعی داده محور 11 – تصویر مفیدی از افزایش داده‌ها 12 – افزایش داده‌ها 13 – آیا افزودن داده‌ها می‌تواند ضرر داشته باشد؟ 14 – افزودن امکانات 15 – ردیابی آزمایشی 16 – از داده‌های بزرگ تا داده‌های خوب تعریف داده و خط مبنا: 1 – چرا تعریف داده سخت است؟ 2 – نمونه‌های بیشتر ابهام لیبل 3 – انواع عمده مشکلات داده 4 – داده‌های کوچک و سازگاری لیبل 5 – بهبود ثبات لیبل 6 – عملکرد سطح انسانی (HLP) 7 – افزایش HLP 8 – به دست آوردن داده‌ها 9 – سلسله داده 10 – متا داده، منشأ داده و اصل و نسب 11 – تقسیم‌های متوازن آموزش/dev/تست 12 – محدوده‌بندی چیست؟ 13 – فرآیند محدوده 14 – دقت در امکان‌سنجی و ارزش 15 – اهتمام به سنجش 16 – نقاط عطف و منابع
موسسه برگزارکننده
دوره آموزش وردپرس مکتب‌خونه

مکتب خونه

مدرس

Andrew Ng

دوره‌های مشابه
درباره دوره: هوش مصنوعی یکی از دروس کارشناسی رشته مهندسی کامپیوتر می‌باشد که در این درس دانشجویان به آنالیز داده‌ها یادگیری ماشین، یادگیری عمیق و .. می‌پردازند. این درس جز دروس مهم مهندسی کامپیوتر به حساب می‌آید به ویژه برای دانشجویانی که قصد ادامه دادن این رشته در کارشناسی ارشد را دارند. مقدمات اولیه: 1 - text classification Embeddings: 1 - آشنایی با Embeddings 2 - نحوه ساخت و جاسازی کلمه speech and voice: 1 - معرفی صوت سری‌های زمانی، شبکه‌های عصبی بازگشتی( RNN) و پیاده‌سازی در Keras: 1 - شبکه‌های بازگشتی RNN 2 - شبکه‌های بازگشتی RNN 3 - Tensors and model subclassing 4 - captcha 5 - Text generation with an RNN مفهوم توجه در یادگیری عمیق: 1 - توجه
درباره دوره: این دوره از مجموعه دوره های آموزش هوش مصنوعی به شما آموزش می‌دهد چگونه چت‌بات‌های مفید بدون نیاز به نوشتن کد ایجاد کنید. با استفاده از قابلیت‌های پردازش زبان طبیعی IBM Watson، یاد خواهید گرفت چگونه چت‌بات‌هایی را برنامه‌ریزی، پیاده‌سازی، آزمایش و مستقر کنید که کاربران شما را خوشحال کنند نه ناراحت. وفادار به وعده ما که نیازی به کد نویسی نیست، شما یاد خواهید گرفت چگونه به‌صورت بصری چت‌بات‌ها را با Watson Assistant (که قبلاً Watson Conversation نام داشت) ایجاد کنید و چگونه آنها را از طریق یک افزونه کاربردی وردپرس در وب‌سایت خود مستقر کنید. وب‌سایتی ندارید؟ نگران نباشید، یک وب‌سایت در اختیار شما قرار خواهد گرفت. چت‌بات‌ها موضوع داغی در صنعت ما هستند و قرار است به بزرگی برسند. هر روز شغل‌های جدیدی که نیاز به این مهارت خاص دارند، اضافه می‌شود، مشاوران نرخ‌های بالایی مطالبه می‌کنند و علاقه به چت‌بات‌ها به‌سرعت در حال انفجار است. گارتنر پیش‌بینی می‌کند که تا سال 2020، 85٪ از تعاملات مشتریان با شرکت‌ها از طریق روش‌های خودکار (که شامل چت‌بات‌ها و فناوری‌های مرتبط است) خواهد بود. این فرصتی است برای شما تا این مجموعه مهارت‌های بسیار پرتقاضا را با یک مقدمه ملایم به موضوع یاد بگیرید که هیچ‌چیزی را از قلم نمی‌اندازد. مقدمه‌ای بر چت‌بات‌ها: 1 - خوش آمدید 2 - مقدمه‌ای بر چت‌بات‌ها کار با Intent: 1 - کار با Intent موجودیت‌ها (Entity): 1 - کار با Entity‌ها گفت‌وگو (Dialog): 1 - همه با هم 2 - ساخت چت‌بات‌های کاربرپسند استقرار (Deployment): 1 - دیپلوی یک وب‌سایت وردپرس متغیرهای زمینه و اسلات (Context Variables & Slots): 1 - کار با متغیرهای زمینه‌ای و Slotها انحرافات (Digressions): 1 - درک انحرافات خلاصه: 1 - نتیجه‌گیری اکشن‌های واتسون (Watson Actions): 1 - خوش آمدید به دستیار واتسون 2 - ساخت اکشن‌های واتسون 3 - مهاجرت مهارت‌های گفت‌وگو به اکشن‌های واتسون آزمون نهایی: 1 - سخنان پایانی
درباره دوره: آموزش رایگان داده‌کاوی پیش رو در یکی از کلاس‌های دانشگاه شریف ضبط شده است. داده‌کاوی یکی از مهم‌ترین و جذاب‌ترین درس‌های رشته مهندسی کامپیوتر در گرایش نرم‌افزار محسوب می‌شود. داده‌کاوی در واقع فرایندی است که شرکت‌ها برای تبدیل داده‌های خام به اطلاعات مفید انجام می‌دهند. متخصصان داده‌کاوی با جستجو میان داده‌ها، الگوهای خاصی پیدا کرده و از آن‌ها برای کسب اطلاعات بیشتر در مورد مشتریان، استراتژی‌های بازاریابی مؤثر، فروش بیشتر و ... استفاده می‌کنند. داده‌کاوی به جمع‌آوری مؤثر داده‌ها، نگهداری از آن‌ها و پردازش کامپیوتری بستگی دارد. از آنجایی که در سال‌های اخیر حجم داده‌ها به شکل چشمگیری افزایش یافته است، اهمیت آموزش رایگان داده‌کاوی هم روزبه‌روز بیشتر می‌شود. یکی از مهم‌ترین کاربردهای داده‌کاوی در بازاریابی است. با کمک این علم می‌توانید مشتریان سودآور و مشتریان وفادار و قدیمی‌تان خود را بشناسید، سبد محصول خود را بهینه کنید، طول عمر مشتری را بسنجید، عملکرد یک برنامه بازاریابی را بررسی کرده و با کشف الگو و روند خرید مشتریان، فروش خود را پیش‌بینی کنید. در دوره آموزش رایگان داده‌کاوی علاوه بر یادگیری این علم تا حدودی با دیتا ساینس یا علوم داده هم آشنا می‌شوید. امروزه داده‌ها بیشتر از هر چیز دنیا را گرفته‌اند. با استفاده از داده‌ها می‌توان به اطلاعات بسیار خوبی دست یافت و آن‌ها را در صنایع گوناگون به کار برد. هدف از یادگیری آموزش رایگان داده‌کاوی این است که دانشجویان کارشناسی ارشد و دکترا و سایر علاقه‌مندان به این زمینه کار با داده‌های بزرگ و تحلیل آن‌ها را یاد بگیرند و الگوهای میان داده‌ها را کشف کنند. کار با داده‌ها پایه و اساس یادگیری ماشین محسوب می‌شود؛ بنابراین اگر می‌خواهید در زمینه یادگیری ماشین، یادگیری عمیق و همچنین علوم داده‌ها فعالیت داشته باشید، باید به داده‌کاوی مسلط باشید. دوره آموزش رایگان داده‌کاوی ابتدا به توضیح مفاهیم پیش‌پردازش داده‌ها و معرفی انبار داده می‌پردازد. سپس مباحث مرتبط با داده‌کاوی را به شما آموزش می‌دهد. فصل اول: آموزش رایگان داده‌کاوی: 1 - جلسه اول 2 - جلسه دوم 3 - جلسه سوم 4 - جلسه چهارم 5 - جلسه پنجم 6 - جلسه ششم 7 - جلسه هفتم 8 - جلسه هشتم 9 - جلسه نهم 10 - جلسه دهم 11 - جلسه یازدهم 12 - جلسه دوازدهم 13 - جلسه سیزدهم 14 - جلسه چهاردهم 15 - جلسه پانزدهم 16 - جلسه شانزدهم 17 - جلسه هفدهم 18 - جلسه هجدهم 19 - جلسه نوزدهم 20 - جلسه بیستم 21 - جلسه بیست‌ویکم 22 - جلسه بیست و دوم 23 - جلسه بیست و سوم 24 - جلسه بیست و چهارم 25 - جلسه بیست و پنجم 26 - جلسه بیست و ششم 27 - جلسه و بیست و هفتم 28 - بیست و هشت 29 - بیست و نه
نظرات شما

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *