درباره دوره:
توابع مورد استفاده در مهندسی و توابع نمایانگر سیگنالها معمولاً توابعی از زمان هستند یا به عبارت دیگر توابعی که در میدان زمان تعریف شده اند. برای حل بسیاری از مسائل بهتر است که تابع در دامنه فرکانس تعریف شده باشد زیرا این دامنه ویژگیهایی دارد که به راحتی محاسبات میانجامد. در ریاضیات، سری فوریه، تابعی است که با استفاده از آن می توان هر تابع متناوب را به صورت جمعی از توابع نوسانی ساده(سینوسی، کسینوسی و یا تابع نمایی مختلط ) نوشت.این تابع به نام ریاضیدان بزرگ فرانسوی، ژوزف فوریه نامگذاری شده است. با بسط هر تابع به صورت سری فوریه، مولفه های بسامدی آن تابع به دست می آید. سپس میتوان محاسبات پیچیده ی حوزه زمان را به راحتی در حوزه فرکانس انجام داد و با عکس تبدیل فوریه به حوزه زمان انتقال داد. این درس نگاهی مفصل به آنالیز فوریه و کاربرهای آن میکند ، تمرینات و مسائل هر بخش را میتوان از وبسایت زیر تهیه کرد
http://see.stanford.edu/see/lecturelist.aspx?coll=84d174c2-d74f-493d-92ae-c3f45c0ee091
فیلم های آموزشی:
1 – جلسه 1 – دانسته های پیشین (متلب)، سری فوریه، پدیده های متناوب و سری های فوریه (تناوب در زمان و فضا)، رابطه دو جانبه بین دامنه ه
2 – جلسه 2 – تناوب، چگونگی استفاده از توابع سینوس و کسینوس برای مدل کردن توابع پیچیده تر، ایده های مدل کردن سیگنال بر اساس مجموع سی
3 – جلسه 3 – ضرایب فوریه، میزان عمومیت سری فوریه، ناپیوستگی و اثر آن بر تعمیم یافتگی سری فوریه، جمع نامحدود برای نمایش بیشتر سیگنال
4 – جلسه 4 – به نتیجه رساندن سری های فوریه، درک جمع های محدود و همگرایی، انتگرال پذیری، تعامد در توان های مختلط، ضرب داخلی و نرم، ت
5 – جلسه 5 – ادامه سری فوریه و معادله گرما، انتقال از سری فوریه به تبدیل فوریه، آنالیز و ترکیب سری فوریه، ارتباط تبدیل فوریه و معکو
6 – جلسه 6 – تصحیح بحث معادله گرما، تنظیمات مشتق تبدیل فوریه از سری فوریه، تنایج اشتقاق، تعریف تبدیل فوریه و معکوس آن، راز بزرگ جها
7 – جلسه 7 – مروری بر تبدیل فوریه، مروری بر تبدیل مستطیل و مثلث، مثال: تبدیل فوریه یک گوسی، خاصیت دوگانی تبدیل فوریه و کاربرد آن
8 – جلسه 8 – تاثیر شیفت سیگنال بر تبدیل فوریه، فرمول تاخیر (قضیه شیفت)، اثرات مقیاس گذاری سیگنال زمانی، قضیه بسط دادن، مفهوم کانوول
9 – جلسه 9 – ادامه کانوولوشن،فیلتر کردن و ایده های پشت آن، کانوولوشن در حوزه زمان و خواص آن، قضیه اشتقاق برای تبدیل فوریه، معادله گ
10 – جلسه 10 – قضیه حد مرکزی و کانوولوشن، نرمال سازی گوسی، نمایش تصویری با کانوولوشن، تنظیمات CLT، توزیع مجموع با کانوولوشن (با اثبا
11 – جلسه 11 – اصلاح پایان اثبات CLT، بحث همگرایی انتگرال، رویکردهایی برای ارائه تعریف مقاوم تری از تبدیل فوریه، مثال هایی از سیگنا
12 – جلسه 12 – داستان Cop، توابع تعمیم یافته، در نظر گرفتن تابع دلتا به عنوان حد یا عملکرد، تعریف توزیع و دلتا به عنوان یک توزیع، چگ
13 – جلسه 13 – تبدیل فوریه برای یک توزیع، توزیع شدگی در اثر توابع، تبدیل فوریه توزیع، کلاس توزع های خو گرفته و تبدیل فوریه آن، تعریف
14 – جلسه 14 – مشتق یک توزیع، مثال: مشتق تابع پله واحد، تابع علامت، کاربردهای سری فوریه، پیش بینی احتیاطی برای توزیع: ضرب توزیع ها،
15 – جلسه 15 – کاربردهای تبدیل فوریه: دیفرانسیل، نمایش میدان الکتریکی، استفاده از اصل Huyghens، بحث تغییر فاز در ارتباط با مسیرهای م
16 – جلسه 16 – نتایج بیشتر از درس جلسه قبل،مقدمات بحث بلور شناسی، تبدیل فوریه تابع Shah، فرمول مجموع پواسن، اثبات و بتدیل فوریه آن،
17 – جلسه 17 – مروری بر خواص اصلی تابع Shah، مقدمات مسئله درون یابی، فرض پهنای باند، حل برای درون یابی دقیق برای سیگنال های با پهنای
18 – جلسه 18 – مروری بر نتایج درون یابی، اصطلاحات: نمونه برداری، نرخ نایکوئیست، فرمول درون یابی در کاربردهای واقعی، تشابه و درون یاب
19 – جلسه 19 – نمایش تشابه سیگنال در با موسیقی، تبدیل فوریه گسسته(DFT)، انتقال به زمان گسسته، ایجاد سیگنال گسسته با نمونه برداری، خل
20 – جلسه 20 – تعریف تبدیل فوریه گسسته، نقاط نمونه، رابطه بین تعداد و فاصله در زمان/فرکانس، نمایی های مختلط در DFT با بردارهای نمایی
21 – جلسه 21 – مروری بر تعاریف DFT: مقدار DFT در 0، DFT برای بردار دلتا، DFT به عنوان ضرب ماتریسی N*n، تناوب سیگنال های ورودی/خروجی،
22 – جلسه 22 – الگوریتم تبدیل فوریه سریع (FFT): مقدمات، شهود، رویکرد ما: شکستن مرتبه N به دو مرتبه N/2، تکرارشونده، نمادهای جدید در
23 – جلسه 23 – سیستم های خطی، تعاریف اساسی، تناسب مستقیم، مقادیر ویژه و بردارهای ویژه، قضیه طیفی و یافتن بردارهای ویژه پایه، ضرب مات
24 – جلسه 24 – مرور جلسه قبل: سیستم های خطی گسسته در مقابل پیوسته، سیستم های خطی آبشاری، ایجاد پاسخ ضربه، قضیه کرنل Schwarz، حالت خا
25 – جلسه 25 – سیستم های خطی تغییرناپذیر با زمان (LTI)و کانوولوشن، سیستم های گسسته و تغییر ناپذیر با زمان، تبدیل فوریه سیستم های LTI
26 – جلسه 26 – رسیدن به تبدیل فوریه با ابعاد بالاتر، تعاریف در قالب بردارها، تبدیل فوریه معکوس، رابطه دوجانبه بین حوزه زمان و فرکانس
27 – جلسه 27 – مروری بر جلسه قبل، تبدیل فوریه توابع جداپذیر: نتایج و مثال: گوسی دو بعدی، تابع شعاعی و اثبات حفظ رابطه شعاعی، کانوولو
28 – جلسه 28 – قضیه انتقال در ابعاد بالا: نتایج، قصیه بسط و نتایج، حالت خاص: تغییر مقیاس و چرخش، معنای رابطه دوجانبه در ابعاد بالا،
29 – جلسه 29 – توابع Shah، شبکه ها و کریستال ها، تبدیل فوریه توابع یاد شده، کریستال ها به عنوان شبکه، نمادها ، مفاهیم و نتایج، کاربر
30 – جلسه 30 – نکاتی در جهت تکمیل مباحث، پرتونگاری و معکوس تبدیل رادون، معرفی مختصات، دلتا در راستای خط A، انتگرال U در امتداد خط A