0

آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین

آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین

درباره این دوره
درباره دوره: یکی از انواع روش‌های یادگیری ماشین (Machine Learning) و هوش مصنوعی، یادگیری عمیق (Deep learning) است. طی این روش، تلاش بر این است که قابلیتی به ماشین (سیستم کامپیوتری) اضافه شود تا ماشین در تصمیم‌گیری‌ها روشی مشابه فرایند ذهن انسان را داشته باشد و به نوعی فعالیت‌های ذهن انسان را تقلید کند. در دوره «آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین» شرکت‌کنندگان با موضوعات مختلفی از جمله مدل‌سازی سطح پایین در تنسورفلو آشنا خواهند شد. «تنسورفلو» (TensorFlow)، یک کتابخانه رایگان و اوپن سورس است و به دلیل ویژگی‌های جذابی که در اختیار کاربران قرار می‌دهد، کاربردهای زیادی در یادگیری ماشین دارد. یکی از اصلی‌ترین کاربردهای تنسورفلو در پیاده‌سازی شبکه‌های عصبی است؛ به همین دلیل این کتابخانه، به عنوان پراستفاده‌ترین کتابخانه در یادگیری عمیق شناخته می‌شود. شرکت‌کنندگان این دوره با همه مباحث مربوط به یادگیری عمیق، مدل‌سازی سطح پایین و کتابخانه تنسورفلو آشنا خواهند شد. به طور مشخص شرکت‌کنندگان در این دوره با مباحث زیر سروکار خواهند داشت: شرکت‌کنندگان این دوره پس از گذراندن این دوره علاوه بر آشنایی با مباحث و تعاریف کلی موارد زیر را نیز به طور کامل فرا خواهند گرفت: مدل‌سازی سفارشی و سطح پایین یکی از مهم‌ترین مهارت‌ها برای افرادی است که قصد دارند در زمینه یادگیری عمیق فعالیت داشته باشند. شما ممکن است بخواهید ایده‌های جدیدی را برای طراحی یک شبکه عصبی پیاده‌سازی کنید. یعنی شبکه‌ای طراحی کنید که تعدادی از اِلمان‌ها به‌صورت default در آن وجود نداشته باشد. به‌عنوان مثال می‌خواهید یک loss جدید تعریف کنید و یا عملکرد شبکه را با یک متریک جدید ارزیابی کنید؛ یا لایه‌ای بسازید که عملکرد جدیدی داشته باشد. پس از گذراندن این دوره با امکانات لازم در تنسورفلو برای این محاسبات آشنا می‌شوید و می‌توانید شبکه‌ای کاملا دلخواه با نیازها و ایده‌آل‌های خودتان ایجاد کنید. هدف اصلی این دوره آشنایی با همه مباحثی است که در این مسیر مورد نیاز شما خواهند بود و برای کار در این مسیر باید به آن‌ها تسلط پیدا کنید. مباحث مطرح شده در این دوره برای همه افرادی که به موضوعاتی همچون یادگیری عمیق و هرآنچه به این موضوع مربوط می‌شود علاقه‌مند هستند، مفید و کاربردی خواهد بود. به طور خاص این دوره برای کسانی است که با تنسورفلو و کراس آشنایی دارند و قصد دارند با گذراندن یک دوره آموزشی علاوه بر مرور مجدد مباحث مربوط به این عناوین، گامی بزرگ در جهت ماهرتر شدن در مدل سازی شبکه‌های عصبی برای یادگیری عمیق بردارند. چنانچه می‌خواهید با دنیای هوش مصنوعی آشنا شوید در آموزش یادگیری عمیق پیشرفته شرکت کنید. این دوره در 33 ساعت آموزش کمک می‌کند تا به‌صورت عملی و تئوری اطلاعات مفیدی درباره هوش مصنوعی پیدا کنید و وارد بازارکار شوید. در دنیای پرشتاب علم و تکنولوژی، هوش مصنوعی به‌عنوان یکی از نوین‌ترین دستاوردهای بشر، توجه همگان را به خود جلب کرده است. یادگیری عمیق (Deep learning) زیرمجموعه‌ای از هوش مصنوعی با الهام از ساختار مغز انسان ساخته شده است از شبکه‌های عصبی مصنوعی برای پردازش و تحلیل اطلاعات پیچیده استفاده می‌کند. این حوزه جذاب که در سال‌های اخیر در ایران نیز مورد استقبال قرار گرفته، فرصت‌های شغلی بی‌نظیری را برای متخصصان این رشته به ارمغان آورده است. شرکت‌های متعددی به دنبال استخدام افراد مجرب در زمینه یادگیری عمیق هستند به همین علت تقاضا برای آموزش این تخصص روز به روز در حال افزایش است. اگر شما نیز از جمله علاقمندان به یادگیری ماشین هستید، این مطلب آموزشی می‌تواند راهنمای شما در مسیر آموزش یادگیری عمیق پیشرفته باشد. یادگیری عمیق پیشرفته دریچه‌ای نو به سوی دنیای فناوری می‌گشاید و فرصت‌های بی‌شماری را برای نوآوری و خلق ایده‌های جدید پیش روی شما قرار می‌دهد. یادگیری ماشین و الگوریتم ماشین لرنینگ نقشی اساسی در پیاده‌سازی و عملکرد سیستم‌های یادگیری عمیق ایفا می‌کنند. هوش مصنوعی، این غولِ نوظهور دنیای فناوری، در حال دگرگونیِ ابعاد مختلف زندگی ما است. در قلب این تحولات شگرف، یادگیری عمیق پیشرفته به‌عنوان نگین درخشان هوش مصنوعی، نقشی بی‌بدیل ایفا می‌کند. شبکه‌های عصبی عمیق، مغز متفکرِ یادگیری عمیق پیشرفته، قادر به انجام محاسباتی در سطحی شگفت‌انگیز هستند. این شبکه عصبی، با تجزیه و تحلیل انبوه داده‌ها، الگوهای ظریف و نامحسوس را کشف می‌کند و به ماشین‌ها توانایی یادگیری و تصمیم‌گیری هوشمندانه می‌دهد. یادگیری عمیق پیشرفته مرزهای هوش مصنوعی را به فراتر از آنچه تاکنون تصور می‌شد، گسترش می‌دهد و زمینه را برای نوآوری‌ها و پیشرفت‌های خارق‌العاده در عرصه‌های مختلف فراهم می‌کند. تسلط بر این دانش، دروازه‌های فرصت‌های شغلی بی‌نظیری در زمینه Deep learning به روی شما می‌گشاید. تقاضای فزاینده برای متخصصان این حوزه در صنایع مختلف، بازاری پررونق و پویا را برای فارغ‌التحصیلان این رشته رقم زده است. اما این تنها مزیت آموزش یادگیری عمیق پیشرفته نیست. شما با یادگیری این دانش، قادر به حل مسائل پیچیده در حوزه‌های مختلف خواهید بود. توانایی تحلیل حجم عظیمی از داده‌ها، کشف الگوهای پنهان و استخراج اطلاعات ارزشمند، شما را به عامل خلاقیت و نوآوری در دنیای پیرامونتان تبدیل خواهد کرد. یادگیری عمیق پیشرفته به شما می‌آموزد که چگونه از قدرت هوش مصنوعی برای بهبود زندگی بشر در زمینه‌های مختلف مانند پزشکی، مهندسی، علوم پایه و غیره استفاده کنید. یادگیری عمیق پیشرفته، این دانش نوظهور دنیای هوش مصنوعی، مرزهای دانش بشری را در تفسیر و تحلیل داده‌ها جابه‌جا کرده است. با ساختار پیچیده‌ای که این دانش دارد، این فناوری قادر به استخراج دانش و بینش عمیق از انبوه اطلاعات خام است و راه‌حل‌هایی نوآورانه برای چالش‌های مختلف ارائه می‌دهد. بنابراین کاربردهای یادگیری عمیق، به وسعت دنیای پیرامون ما است. از تشخیص دقیق بیماری‌ها تا طراحی و ساخت ربات‌های هوشمند، این فناوری در حال دگرگونی صنایع مختلف و بهبود کیفیت زندگی بشر است. برخی از مهم‌ترین کاربردهای یادگیری عمیق پیشرفته عبارت‌اند از: آموزش یادگیری عمیق پیشرفته، کلید ورود به این دنیای بی‌حد و مرز است. با گذراندن دوره‌های تخصصی و تسلط بر ابزارهایی مانند Python و Tensorflow، می‌توانید به جمع متخصصان خلاق و نوآور این حوزه بپیوندید و در مسیر پیشرفت علم و فناوری نقشی مؤثر داشته باشید. یادگیری عمیق پیشرفته، دریچه‌ای نو به سوی دنیای پیچیده و شگفت‌انگیز هوش مصنوعی می‌گشاید. در این مسیر، تسلط بر ابزارهای قدرتمندی مانند تنسورفلو و کراس، کلید دستیابی به توانایی‌های خارق‌العاده در تحلیل و تفسیر داده‌ها و حل مسائل پیچیده است. تنسورفلو (Tensorflow)، به‌عنوان کتابخانه‌ای متن‌باز و قدرتمند در پایتون (Python) ، نقش‌آفرینیِ بی‌بدیلی در محاسبات پیچیده اعدادی و پیاده‌سازی شبکه‌های عصبی پیچیده دارد. این کتابخانه، مجموعه‌ای غنی از الگوریتم‌ها و مدل‌های یادگیری ماشین را در اختیار شما قرار می‌دهد تا در زمینه‌های مختلفی مانند تشخیص ارقام دست‌نویس، تعبیه کلمات، ترجمه ماشینی، شبیه‌سازی‌های مبتنی بر معادلات دیفرانسیل و… نتایج شگفت‌انگیزی دست آورید. کراس (Keras) نیز به‌عنوان ابزاری نوین در آموزش یادگیری تقویتی، به شما کمک می‌کند عامل‌های هوشمند را آموزش دهید تا بتوانند در محیط‌های پیچیده و پویا به بهترین نحو عمل کنند. این ابزار، با ارائه الگوریتم‌های قدرتمند، باعث می‌شود سیستم‌های هوشمند را برای انجام وظایف مختلف مانند بازی کردن، رباتیک و کنترل سیستم‌های پیچیده آموزش دهید. اهمیت آموزش تنسورفلو و کراس و آموزش تنسورفلو پیشرفته در دوره‌ آموزش یادگیری عمیق پیشرفته از این رو آشکار می‌شود که این ابزارها، پایه و اساس تسلط بر مهارت‌های عملی در این حوزه هستند. به علت اهمیت فراوانی که آموزش ماشین لرنینگ پیشرفته در دنیای امروزی دارد مکتب خونه تصمیم گرفته است تا با برگزاری آموزش یادگیری عمیق پیشرفته به درک عمیق‌تر مطالب این حوزه کمک کند. در دوره مقدماتی یادگیری عمیق پیشرفته مباحث ابتدایی گفته می‌شود. مدت زمان برگزاری این آموزش 33 ساعت است که 5 ساعت آموزش تئوری و 28 ساعت حل تمرین و انجام پروژه است. به همین علت شما با شرکت در این آموزش به تمامی مباحث به‌طور کامل مسلط می‌شوید. مدرس دوره آموزش یادگیری عمیق پیشرفته، پژمان اقبالی است که در حال حاضر به‌صورت تخصصی روی نامه‌نویسی محاسباتی، آمار و یادگیری ماشین، مدل‌های اجزای محدود و بهینه‌سازی کار می‌کند. پس از گذشت چهار هفته آموزش آزمونی در انتهای دوره برگزار می‌شود که دانشجویانی که تمام تمرین‌ها و پروژه‌های خود به موقع ارسال کرده‌اند می‌توانند شرکت کنند. چنانچه آنها در این آزمون نمره‌ای بیشتر از 70 بدست آورند، مدرکی معتبر از طرف مکتب خونه به آنها ارائه می‌شود که مهر تأییدی بر توانایی افراد است. در  آموزش یادگیری عمیق پیشرفته مباحث زیر وجود دارد: ·        دل‌سازی سطح پایین ·        تنسورها در تنسورفلو ·        معرفی tf function ·        تعریف loss دلخواه – الف ·        تعریف loss و regularizer دلخواه ·        تعریف مدل دلخواه ·        Gradient Tape ·        تعریف training loop ·        مروری بر امکانات پردازش داده تنسورفلو ·        پروژه اول مدل‌سازی سطح پایین (الزامی) پیش از برای شرکت در این دوره باید آموزش تنسورفلو و کراس را گذرانده باشید. این کار به شما کمک می‌کند تا یادگیری عمیق پیشرفته را بهتر درک کنید. اگر می‌خواهید دانش بیشتری در این زمینه داشته باشید دوره آموزش رایگان یادگیری عمیق بهترین گزینه برای شما است. زیرا شما می‌توانید از جزوه درس یادگیری عمیق می‌توانید برای درک بهتر یادگیری عمیق پیشرفته استفاده کنید. آموزش دیپ لرنینگ پیشرفته مکتب خونه چه مزایایی دارد؟ دوره آموزش دیپ لرنینگ پیشرفته مکتب‌خونه، دروازه‌ای به سوی تسلط بر پیچیدگی‌های هوش مصنوعی و توانایی حل مسائل بغرنج با اتکا به قدرت شگفت‌انگیز شبکه‌های عصبی می‌گشاید. با شرکت در بهترین دوره یادگیری عمیق، مهارت‌های خود را در این حوزه به سطحی فراتر ارتقا خواهید داد و آماده ورود به دنیای حرفه‌ای و چالش‌های جذاب خواهید شد. یادگیری عمیقِ کاربردی: این دوره با رویکردی پروژه محور طراحی شده است و شما در کنار آموزش تئوری مفاهیم کلیدی، مهارت‌های عملی خود را نیز با انجام پروژه‌های چالش‌برانگیز تقویت خواهید کرد. پشتیبانی بی‌وقفه: دوره یادگیری عمیق پیشرفته، تیمی از متخصصان مجرب در کنار شما خواهند بود تا به سوالات شما پاسخ داده و شما را در حل چالش‌هایتان یاری کنند. دسترسی دائمی: با تهیه این دوره، دسترسی نامحدود به محتوای آموزشی خواهید داشت و می‌توانید در هر زمان و مکانی که مایل باشید به مطالعه و مرور مباحث بپردازید. گواهینامه معتبر: پس از اتمام دوره و قبولی در آزمون نهایی، گواهینامه‌ای معتبر از مکتب‌خونه دریافت خواهید کرد که اعتباری ارزشمند در بازارکار  داخل و خارج از ایران دارد.هوش مصنوعی، کلید ورود به دنیای آینده: گامی فراتر با یادگیری عمیق پیشرفته در دنیای پرشتاب علم و فناوری، هوش مصنوعی جایگاه ویژه‌ای کسب است. یادگیری عمیق پیشرفته که ساختاری پیچیده دارد می‌تواند در آموزش یادگیری عمیق با پایتون و آنالیز داده‌ها بسیار مؤثر باشد. این دانش کمک می‌کند تا شما اطلاعات مفیدی از داده‌های پیچیده بدست آورید و به کسب‌وکارها در پیشرفت و افزایش درآمد کمک کنید. آیا خواهان ارتقاء موقعیت شغلی خود و دستیابی به دانش روز دنیا هستید؟ آموزش یادگیری عمیق پیشرفته مکتب‌خونه، فرصتی بی‌نظیر برای تسلط بر این فناوری نوظهور و گامی بلند در مسیر تبدیل شدن به متخصصی خلاق و نوآور در این حوزه به‌شمار می‌رود. همچنین در مکتب خونه انواع دوره آموزش هوش مصنوعی و آموزش ماشین لرنینگ، آموزش پایتون و آموزش دیپ لرنینگ به عنوان مکمل و پیش نیاز این دوره آموزشی موجود است. مدل‌سازی سطح پایین: 1 – معرفی دوره 2 – تنسورها در تنسورفلو – الف 3 – تنسورها در تنسورفلو – ب 4 – معرفی tf function 5 – تعریف loss دلخواه – الف 6 – تعریف loss دلخواه – ب 7 – تعریف loss و regularizer دلخواه 8 – تعریف متریک دلخواه 9 – تعریف لایه دلخواه – الف 10 – تعریف لایه دلخواه – ب 11 – تعریف لایه دلخواه – پ 12 – تعریف مدل دلخواه 13 – الف – Gradient Tape 14 – ب – Gradient Tape 15 – تعریف training loop دلخواه – الف 16 – تعریف training loop دلخواه – ب 17 – تعریف training loop دلخواه – پ 18 – مروری بر امکانات پردازش داده تنسورفلو 19 – پروژه اول مدل‌سازی سطح پایین 20 – پروژه دوم مدل‌سازی سطح پایین 21 – پروژه سوم مدل‌سازی سطح پایین 22 – پروژه چهارم مدل‌سازی سطح پایین 23 – پروژه پنجم مدل‌سازی سطح پایین
سرفصل‌های دوره
مدل‌سازی سطح پایین: 1 – معرفی دوره 2 – تنسورها در تنسورفلو – الف 3 – تنسورها در تنسورفلو – ب 4 – معرفی tf function 5 – تعریف loss دلخواه – الف 6 – تعریف loss دلخواه – ب 7 – تعریف loss و regularizer دلخواه 8 – تعریف متریک دلخواه 9 – تعریف لایه دلخواه – الف 10 – تعریف لایه دلخواه – ب 11 – تعریف لایه دلخواه – پ 12 – تعریف مدل دلخواه 13 – الف – Gradient Tape 14 – ب – Gradient Tape 15 – تعریف training loop دلخواه – الف 16 – تعریف training loop دلخواه – ب 17 – تعریف training loop دلخواه – پ 18 – مروری بر امکانات پردازش داده تنسورفلو 19 – پروژه اول مدل‌سازی سطح پایین 20 – پروژه دوم مدل‌سازی سطح پایین 21 – پروژه سوم مدل‌سازی سطح پایین 22 – پروژه چهارم مدل‌سازی سطح پایین 23 – پروژه پنجم مدل‌سازی سطح پایین
موسسه برگزارکننده
دوره آموزش وردپرس مکتب‌خونه

مکتب خونه

مدرس

پژمان اقبالی

دوره‌های مشابه
درباره دوره: هوش مصنوعی یکی از دروس کارشناسی رشته مهندسی کامپیوتر می‌باشد که در این درس دانشجویان به آنالیز داده‌ها یادگیری ماشین، یادگیری عمیق و .. می‌پردازند. این درس جز دروس مهم مهندسی کامپیوتر به حساب می‌آید به ویژه برای دانشجویانی که قصد ادامه دادن این رشته در کارشناسی ارشد را دارند. مقدمات اولیه: 1 - text classification Embeddings: 1 - آشنایی با Embeddings 2 - نحوه ساخت و جاسازی کلمه speech and voice: 1 - معرفی صوت سری‌های زمانی، شبکه‌های عصبی بازگشتی( RNN) و پیاده‌سازی در Keras: 1 - شبکه‌های بازگشتی RNN 2 - شبکه‌های بازگشتی RNN 3 - Tensors and model subclassing 4 - captcha 5 - Text generation with an RNN مفهوم توجه در یادگیری عمیق: 1 - توجه
درباره دوره: این دوره از مجموعه دوره های آموزش هوش مصنوعی به شما آموزش می‌دهد چگونه چت‌بات‌های مفید بدون نیاز به نوشتن کد ایجاد کنید. با استفاده از قابلیت‌های پردازش زبان طبیعی IBM Watson، یاد خواهید گرفت چگونه چت‌بات‌هایی را برنامه‌ریزی، پیاده‌سازی، آزمایش و مستقر کنید که کاربران شما را خوشحال کنند نه ناراحت. وفادار به وعده ما که نیازی به کد نویسی نیست، شما یاد خواهید گرفت چگونه به‌صورت بصری چت‌بات‌ها را با Watson Assistant (که قبلاً Watson Conversation نام داشت) ایجاد کنید و چگونه آنها را از طریق یک افزونه کاربردی وردپرس در وب‌سایت خود مستقر کنید. وب‌سایتی ندارید؟ نگران نباشید، یک وب‌سایت در اختیار شما قرار خواهد گرفت. چت‌بات‌ها موضوع داغی در صنعت ما هستند و قرار است به بزرگی برسند. هر روز شغل‌های جدیدی که نیاز به این مهارت خاص دارند، اضافه می‌شود، مشاوران نرخ‌های بالایی مطالبه می‌کنند و علاقه به چت‌بات‌ها به‌سرعت در حال انفجار است. گارتنر پیش‌بینی می‌کند که تا سال 2020، 85٪ از تعاملات مشتریان با شرکت‌ها از طریق روش‌های خودکار (که شامل چت‌بات‌ها و فناوری‌های مرتبط است) خواهد بود. این فرصتی است برای شما تا این مجموعه مهارت‌های بسیار پرتقاضا را با یک مقدمه ملایم به موضوع یاد بگیرید که هیچ‌چیزی را از قلم نمی‌اندازد. مقدمه‌ای بر چت‌بات‌ها: 1 - خوش آمدید 2 - مقدمه‌ای بر چت‌بات‌ها کار با Intent: 1 - کار با Intent موجودیت‌ها (Entity): 1 - کار با Entity‌ها گفت‌وگو (Dialog): 1 - همه با هم 2 - ساخت چت‌بات‌های کاربرپسند استقرار (Deployment): 1 - دیپلوی یک وب‌سایت وردپرس متغیرهای زمینه و اسلات (Context Variables & Slots): 1 - کار با متغیرهای زمینه‌ای و Slotها انحرافات (Digressions): 1 - درک انحرافات خلاصه: 1 - نتیجه‌گیری اکشن‌های واتسون (Watson Actions): 1 - خوش آمدید به دستیار واتسون 2 - ساخت اکشن‌های واتسون 3 - مهاجرت مهارت‌های گفت‌وگو به اکشن‌های واتسون آزمون نهایی: 1 - سخنان پایانی
درباره دوره: آموزش رایگان داده‌کاوی پیش رو در یکی از کلاس‌های دانشگاه شریف ضبط شده است. داده‌کاوی یکی از مهم‌ترین و جذاب‌ترین درس‌های رشته مهندسی کامپیوتر در گرایش نرم‌افزار محسوب می‌شود. داده‌کاوی در واقع فرایندی است که شرکت‌ها برای تبدیل داده‌های خام به اطلاعات مفید انجام می‌دهند. متخصصان داده‌کاوی با جستجو میان داده‌ها، الگوهای خاصی پیدا کرده و از آن‌ها برای کسب اطلاعات بیشتر در مورد مشتریان، استراتژی‌های بازاریابی مؤثر، فروش بیشتر و ... استفاده می‌کنند. داده‌کاوی به جمع‌آوری مؤثر داده‌ها، نگهداری از آن‌ها و پردازش کامپیوتری بستگی دارد. از آنجایی که در سال‌های اخیر حجم داده‌ها به شکل چشمگیری افزایش یافته است، اهمیت آموزش رایگان داده‌کاوی هم روزبه‌روز بیشتر می‌شود. یکی از مهم‌ترین کاربردهای داده‌کاوی در بازاریابی است. با کمک این علم می‌توانید مشتریان سودآور و مشتریان وفادار و قدیمی‌تان خود را بشناسید، سبد محصول خود را بهینه کنید، طول عمر مشتری را بسنجید، عملکرد یک برنامه بازاریابی را بررسی کرده و با کشف الگو و روند خرید مشتریان، فروش خود را پیش‌بینی کنید. در دوره آموزش رایگان داده‌کاوی علاوه بر یادگیری این علم تا حدودی با دیتا ساینس یا علوم داده هم آشنا می‌شوید. امروزه داده‌ها بیشتر از هر چیز دنیا را گرفته‌اند. با استفاده از داده‌ها می‌توان به اطلاعات بسیار خوبی دست یافت و آن‌ها را در صنایع گوناگون به کار برد. هدف از یادگیری آموزش رایگان داده‌کاوی این است که دانشجویان کارشناسی ارشد و دکترا و سایر علاقه‌مندان به این زمینه کار با داده‌های بزرگ و تحلیل آن‌ها را یاد بگیرند و الگوهای میان داده‌ها را کشف کنند. کار با داده‌ها پایه و اساس یادگیری ماشین محسوب می‌شود؛ بنابراین اگر می‌خواهید در زمینه یادگیری ماشین، یادگیری عمیق و همچنین علوم داده‌ها فعالیت داشته باشید، باید به داده‌کاوی مسلط باشید. دوره آموزش رایگان داده‌کاوی ابتدا به توضیح مفاهیم پیش‌پردازش داده‌ها و معرفی انبار داده می‌پردازد. سپس مباحث مرتبط با داده‌کاوی را به شما آموزش می‌دهد. فصل اول: آموزش رایگان داده‌کاوی: 1 - جلسه اول 2 - جلسه دوم 3 - جلسه سوم 4 - جلسه چهارم 5 - جلسه پنجم 6 - جلسه ششم 7 - جلسه هفتم 8 - جلسه هشتم 9 - جلسه نهم 10 - جلسه دهم 11 - جلسه یازدهم 12 - جلسه دوازدهم 13 - جلسه سیزدهم 14 - جلسه چهاردهم 15 - جلسه پانزدهم 16 - جلسه شانزدهم 17 - جلسه هفدهم 18 - جلسه هجدهم 19 - جلسه نوزدهم 20 - جلسه بیستم 21 - جلسه بیست‌ویکم 22 - جلسه بیست و دوم 23 - جلسه بیست و سوم 24 - جلسه بیست و چهارم 25 - جلسه بیست و پنجم 26 - جلسه بیست و ششم 27 - جلسه و بیست و هفتم 28 - بیست و هشت 29 - بیست و نه
نظرات شما

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *